QUANTIFYING FAMILY BUSINESS OWNERS' ATTITUDES TOWARDS SUCCESSION: DELVING DEEPER BY RANDOM FORESTS

Kılıç, A., Filizöz, B.

Arzu Kilic / Department of Business Administration, Faculty of Economics and Administrative Sciences, Ardahan University, Ardahan, Turkey. Email: arzukilic@ardahan.edu.tr.

Berrin Filizöz / Department of Business Administration, Faculty of Economics and Administrative Sciences, Cumhuriyet University, Sivas, Turkey. Email: berrinfilizoz@gmail.com.

Abstract

Family businesses are the lifeblood of the economic growth of the nations. However, a large gap exists about the application of machine-learning algorithms such as Random Forests (RF) to the quantification of patterns, drivers, and interactions in the succession process of family businesses. The primary aim and novelty of this study lie in the quantification of variable importance based on machine-learning algorithms, and the differences among the characteristics of family businesses, family employees, and family business owners (FBOs) for multivariate responses. For this reason, a field study was carried out in family businesses in Sivas and Ardahan provinces. The questionnaire form created by the researchers was used in this study. In this research, RF classification model was applied. RF classification models of 17 response variables were constructed as a function of 32 predictors.

Implications for Central European audience: Impacts of characteristics of FBOs, family businesses, and family employees on FBOs' willingness to transfer to successors and preferences about the successor's qualities were modelled. High-dimensional data were collected from 53 family business owners (FBOs) in two cities for a total of 49 variables. As a result, the domain of the FBOs' characteristics was found to have a more profound impact on both FBO's willingness to transfer to a successor and what successor's qualities were most valued than did the domains of the family business and employee characteristics.

Keywords: machine learning; small-sized enterprises; family business

JEL Classification: M10, M59

Introduction

Family businesses, in particular, small-scale family enterprises are the backbone of national economies. Micro-scale (local) socio-economic decisions are the drivers of macro-scale (national and regional) socio-economic changes (Van Praag et al., 2007). Globally, family businesses were on average estimated to constitute 70-to-90% of all business entities and create 60-to-90% of gross domestic product (GDP) annually (Allio,

2004; Blodgett et al., 2011; Tucker, 2011). In Turkey, 95% of all businesses are family businesses with a mean survival rate of 25 years 30, 12 and 3% of which have been transferred to the second, third and fourth generations, respectively (Tuncel, 2011; ASSBA, 2016). The succession process is one of the main driving forces behind the sustainability of the family business. The lack of strategical planning and management in the succession process hinders the long-term existence of family businesses (Venter et al., 2005).

Many factors influential on the successful transition of management and ownership to heirs or successors in family businesses have been studied extensively in related literature (Le Breton-Miller et al., 2004). In the literature of family business, succession has become one of the most significant themes (De Massis et al., 2008; Nordqvist & Melin, 2010; Sharma, 2004). Chua et al. (2003) pointed out that the sustenance and transition of family business were what the family business leaders were most concerned with. The reason for this relates not only to the necessity for every family firm to be eventually transferred to an heir, or a successor as an integral part of its life cycle but also to the challenges of the complex process of "emotional and financial adaptation and management and/or ownership transfer" for family firms (Laakkonen & Kansikas, 2011, pp. 984).

The most influential factors on the succession process were reported as the owners' attitudes towards losing their authority, control over their successors and individuality identified with firms, their senses of potential conflicts with their successors, their fear of death, and their indecision about the choice of successors (Hacıbayramoğlu, 2014). The succession as a delicate process that requires special attention is usually characterized by uncertainty, tense mood, conflict, and reorientation. For example, new roles, and their restructuring are needed to be defined for all the stakeholders involved, such as family members, transferees, potential heirs, and non-family managers and employees. Once a successor is chosen and operationally active, the power structure needs to be restructured due to its change (Zehe, 2016). The success of the succession primarily depends on successors' characteristics and attitudes, in particular, on their commitment and willingness (Chrisman et al., 1998; Sharma & Irving, 2005). Also, heirs' or successors' related education and training, on- and off-job experience and duration, entrance level, internal position, breadth of knowledge, communication ability, trustworthiness and age also play an essential role in the selection (Hacıbayramoğlu, 2014; Kılıç & Filizöz, 2019).

There exist various studies about the transfer of management and its management, heir or successor selection, and most sought heir or successor characteristics in related literature such as Cesaroni & Sentuti (2017), Chua et al. (1999), Devany (2006), Gomba & Kele (2016), Güller (2010), and Sharma & Rao (2000). An extensive literature review (e.g., Yu et al., 2012; Bau et al., 2013) indicated that the majority of the related studies had used questionnaire data, convenience sampling, small sample sizes, conceptual analyses and descriptions, and qualitative data analyses. In addition to the above common features, interactions among multiple factors, non-linear relationships, non-parametric nature of variables measured, high-dimensional data, a large number of missing values, and the presence of outliers and noise have been an integral part of such studies and research data (Grimmer, 2015). All these challenges may render machine-

learning algorithms useful in accounting for the drivers and patterns of the succession process since machine learning is resistant to these challenges (Lazer et al., 2009). Machine learning can be described as the process of deriving decision rules from training by examples of known input-output behaviours and their application to the problems of prediction, classification, optimization, change detection, and pattern recognition (Jordan & Mitchell, 2015).

The primary aim and novelty of this study lie in the quantification of variable importance based on machine-learning algorithms, and the differences among the characteristics of family businesses, family employees, and family business owners (FBOs) for multivariate responses. To the best of our knowledge, there exists no study about the application of machine-learning approaches to the questionnaire data about FBOs' attitudes towards his/her heirs and successors. In particular, Random Forests (RF) is among the best of today's most powerful machine-learning methods and has not been implemented in this field thus far. To contribute to filling this gap in related literature, the objectives of this exploratory study were to (1) quantify the relative importance and sensitivity of explanatory variables in elucidating FBOs' attitudes in succession by using RF classification models; and (2) explore the benefits of adopting RF in the computational social studies.

1 Data and methodology

In the structured questionnaire surveys, 28 firms from the Ardahan city, and 25 firms from the Sivas city participated. The main fractions of the participants from both cities were as follows: 5.7% women, 35.9% in the age of 41-50, 45.2% in the age of ≥ 51, 37.7% high school graduates, 76% in favour of transferring to heir/successor, 55% those who did not determine the transfer time, and 40.8% those who planned on transferring within 1-10 years. In response to the questions about FBOs' attitudes in the process of succession preferred on-site training, monitoring, supervision, transfer of rights before and after death, and actively working after the transfer, respectively (Table A1). The participants were asked to reveal their preferences for the dichotomous questions about the successor qualities sought (as indicated by QMS in Table A1). Their most frequent responses were thus: preferred honesty, commitment to a family business, entrepreneurship, and ability to solve problems (Kılıç & Filizöz, 2019).

A total of 17 response variables concerning FBOs' attitudes in succession and a total of 32 predictors (9 business characteristics + 8 family employee characteristics + 15 FBO characteristics) were measured on the nominal and ordinal scales (Table A1). The ordinal scale used was binary with the codes 1 and 2 referring to the least and most preferred, respectively. Quality control and quality assurance (QCQA) of the gathered data were implemented by employing the procedures of identifying erroneous values and data gaps, statistical distributions, descriptive statistics, and multicollinearity. Following the QCQA procedure, the resultant data matrix of 49 columns (variables) × 53 rows (N = sample size) was analyzed. Anderson-Darling (AD) statistic was performed to test the normality assumption of error terms and how well the data follow any of 14 parametric distributions and 2 transformations. The non-parametric tests of Spearman's rank-order and Kendall Tau-b rank-order correlation matrices were used to capture the strength (the magnitude of correlation coefficient—r) and direction (the sign of r) of pairwise linear relationships

among the variables.

Since the response variables were categorical with binary values, RF classification model, a non-parametric method, was performed. The RF algorithm developed by Breiman (2001) creates an ensemble of decision trees, instead of one tree (model), based on a bootstrapping-based sampling of *N* rows of the original data with replacement. About one-third (37%) of the original data not included in the training dataset of a given decision tree is referred to as out-of-bag (OOB) observations and treated as a validation dataset (Breiman, 2001). The bootstrapping procedure is what most makes RF distinct and among the best of today's available machine-learning algorithms with the strongest predictive and classification power and accuracy (Luo et al., 2004). The number of decision trees to be grown was tried using 200, 500 and 1000 trees in the exploratory data analysis and was determined finally as 200. The number of predictors tested at each node in RF was 32 (Table A1). The minimum number of a non-terminal node was selected as two since this number was reported to enable decision trees to grow to their full sizes, thus yielding the best results with RF (Luo et al., 2004).

The artificial intelligence and machine-learning algorithms are referred to as the black-box models whose inputs and outputs are well observed. But their internal structures are either not well or not at all understood. Therefore, the interpretability of the RF models was introduced using their following two outputs based on the OBB validation dataset: (1) predictive performance, and (2) normalized relative variable importance. Area under a receiver operation characteristic (ROC) curve (AUC), lift, and overall misclassification rate were used to evaluate the performance of the 17 RF classification models. The scale- and classification-threshold-invariant AUC value varies between 0 (100% wrong predictions) and 1 (100% correct predictions). Lift measures how frequently two independent events are associated with a focus on the most critical x^{th} percentile of the samples, and thus, indicates the classification efficiency. In this study, the 10th percentile of classification accuracy was adopted to compare against the entire dataset. The lower misclassification rate is also known as generalization error rate shows that the more dependencies or better discriminations between output and inputs take place.

Normalized relative variable importance was ranked using the permutation and Gini methods. The permutation variable importance metric was determined monitoring changes in the predictive power of the RF models in response to the shuffling of within-column values of each predictor at a time, regardless of what predictors were internally used in the model. The (internal) Gini method describes the role of predictors in the model in the way that the model was constructed. The 17 RF binary classification models were built using Salford Predictive Modeler® RandomForests® 8.3. The alternative hypotheses posed to capture the differences among the characteristics of family businesses, family employees, and FBOs for the 17 responses were tested using Chi-square goodness-of-fit test based on the normalized variable importance scores. Minitab 17 was used in this analysis.

2 Results

A total of 49 variables (17 responses and 32 predictors), and their observed levels, frequencies and maximum entropy values are described in Table A1 (N = 53). Entropy measures the degree of uncertainty (information availability) in a random variable. It ranges from 0 for a homogenous dataset when no information is needed (predictability peaks) to 1 for a perfectly random dataset when unpredictability (information needed) peaks. In our dataset, the maximum entropy value varied between 0.23 for honesty (QMS1) as the successor quality that FBOs seek and 1.0 for the fields of business activity (BAC). The response rate for the 49 questions was between 100% (N = 53) and 30.2% (N = 16).

Since the dataset did not meet the parametric test assumptions based on Anderson-Darling test, the two non-parametric correlation matrices of Spearman and Kendall Tau-b were used as the more robust measures of linear relationships among the categorical variables. These correlation matrices use different logics to measure the correlation. Although the two matrices had very similar r values, the Spearman's r values (Figure A1) were slightly higher than the Kendall Tau-b ones (Figure A2).

Therefore, only Spearman's r values were reported for the remaining response variables other than FBOs' willingness to transfer to successors (TFM). FBOs' TFM differed significantly between the two cities and was higher in Ardahan than Sivas (r = 0.50; P < 0.05 for both tests) (Figures A1 and A2). FBO's TFM was most strongly correlated with the FBOs' attitudes of sharing experiences (ATF2) and supervision (TAT3) during succession negatively (r = -0.79) and with the partner availability (PAV) and the presence of non-family managers (NFM) positively (r = 0.63) (P < 0.05) (Table 2).

Among the 16 qualities that FBOs sought in successors (QMS1 to 16), the strongest negative correlation was found between successor's commitment to the family business (QMS2), entrepreneurship (QMS3) and past performance (QMS11) and the FBOs' attitude of on-site training during succession (TAT1) (r = -1.0; P < 0.05) (Table 2). Likewise, the strongest positive correlation existed between successor's gender (QMS14) and on-site training during succession (TAT1) (r = 1.0; P < 0.05) (Table 2). In the strongest negative correlations with the QMS1 to 16, the most frequently used predictor was the FBO attitudes in the succession of sharing experiences (ATF2) and supervision (TAT3) (29.4%) followed by on-site training by FBOs (TAT1) and FBOs' actively working (TAT4) (23.5%) (Table 2). For the strongest positive correlations, the most frequent predictor was the job task definition of family employees (FME8), partner availability (PAV), and transfer of rights before death (TAT5) (23.5%) (Table 2).

Table 2 | Maximum correlation coefficient (r) values of Spearman's rank-order test between 17 response variables and the remaining variables

Dana a mana a manina la la	Ma	x r values
Response variable	Negative	Positive
TFM	-0.790	0.632
	TAT3-ATF2	PAV-NFM
QMS1	-0.693	0.480
	FME1	FME6
QMS2	-1.0	0.661
	TAT1	ATF4
QMS3	-1.0	0.661
	TAT1	ATF4
QMS4	-0.395	0.395
	BLS-TAT3-4-6-ATF2-3	TAT5
QMS5	-0.500	0.632
	TAT2	GRA
QMS6	-0.395	0.316
	GRA-TAT3-4-ATF2	BLS-PAV-NFM-FME8-TAT6-ATF3
QMS7	-0.395	0.395
	BLS-TAT3-4-6-ATF2-	TAT5
	3	
QMS8	-0.395	0.316
	GRA-TAT3-4-ATF2	BLS-PAV-NFM-FME8-TAT6-ATF3
QMS9	-0.755	0.755
	TAT2	NFMC-TIM
QMS10	-0.790	0.632
	BLS-TAT1-ATF3	PAV-NFM-FME8
QMS11	-1.0	0.661
	TAT1	ATF4
QMS12	-0.800	0.800
	FME7	PAV-NFM-FME8
QMS13	-0.395	0.557
	ATF4	TAT1-GRA-ATF3
QMS14	-0.661	1.0
	ATF4	TAT1
QMS15	-0.294	0.412
	ATF1	BEY-FME1
QMS16	-0.632	0.755
	PAV-NFM-FME8	TAT1

Based on the OOB validation dataset, the ROC-AUC metric varied between 0.47 (0.13 to 0.82 at 95% confidence limit) for birth order of heirs (QMS15) and 0.80 (0.68 to 0.92 at 95% confidence limit) for sub-share size of ownership (QMS16) (Table A3). As the ROC-AUC value reaches unity, the RF classification models have a better discrimination ability. The lift value of the most critical 10th percentile ranged from 0.0 for successor honesty (QMS1) to 4.4 for the successor's ability to solve problems (QMS6) among the 17 models (Table A3). The higher the lift value is, the better the model performance is. The overall misclassification rate of the 17 RF models changed between a minimum of 0.26 for both FBOs' willingness to transfer to a successor (TFM) and successor seniority (QMS13) and a maximum of 0.57 for successor's trustworthiness (QMS7) (Table A3).

The overall classification accuracy according to the confusion matrices of the 17 model outcomes varied between 11.3% for successor's birth order (QMS15) and 64.2% for successor's respectability (QMS10) (Table A4). The second-best classification accuracy

belonged to FBO's willingness to transfer to a successor (TFM) (62%). Out of the 16 successor qualities, the successor's creativity (QMS8) had the second-worst classification accuracy (15.1%) (Table A4).

The normalized scores (between 0 and 100%) of relative predictor importance are provided for the 17 RF classification models in Table A5 based on the two methods of the RF algorithm: (1) permutation, and (2) Gini. The Gini method shows the relative importance of the internal predictors of the models in the way that the models were constructed. However, the permutation method quantifies the relative importance by monitoring the impact of randomly shuffling values of each predictor in itself on the model performance, regardless of the internal model predictors and coefficients used. If a certain variable is important, then randomly permuting the order of its values reduces the model accuracy. Hence, the permutation method may as well be considered a sensitivity analysis since the more sensitive the model performance is to a given predictor, the higher its relative importance is. Furthermore, it captures not only main (individual predictor) effects but also interaction effects when the non-linear mechanisms are involved in the prediction of events. It is because if an interaction between two or more predictors exists, then permuting one of the variables in the interaction decreases the predictive power of the interaction, and thus, the model which in turn shows up as important in RF.

Based on the permutation method, the most important and sensitive predictors that were most likely to interact are presented in Table A5 for each of the 17 RF classification models. The most frequent predictor of the relatively most important predictors across the 17 RF classification models was found as FBO's education level (EDU, 25.3%) and successor's on-site training by FBO (TAT1, 17.7%) for the Gini and permutation methods, respectively (Table A5). There were the following six RF classification models out of 17 that had the same most important variables according to both approaches: FBO's education (EDU) for successor's trustworthiness (QMS7) and creativity (QMS8); successor's on-site training by FBO (TAT1) for successor's past performance (QMS11); family employee's job task definition (FME8) for successor's past performance (QMS11); business establishment year (BEY) for successor's birth order (QMS15); and business location (CITY) for successor's sub-share size of ownership (QMS16). The most frequent predictors of the least important predictors among the 17 RF classification models were successor's (out-of-)job experience (FME7), successor's gender (GEN), the number of non-family managers (NFMC), and transfer of rights to successors before FBO's death (TAT5) (11.8%) according to the permutation method, and successor's gender (GEN, 70.6%) according to the Gini method.

As for the testing of the alternative hypotheses (H_{a1}) for the 17 responses, Chi-square goodness-of-fit test was performed to compare the observed distributions of the variable importance of the three predictor classes (1 = the FBO attributes; 2 = the family employee attributes; 3 = the family business attributes) for each RF model to their expected uniform distribution under the assumption that the three classes had equal probability. Based on the extent to which the observed distribution of the normalized variable importance scores varied from the hypothesized distribution, the higher proportions of the predictor class of the FBO's attributes were significantly observed in the 14 RF models (TFM, and QMS1 to QMS13) out of 17 (P = 0.001). In the remaining three RF models, the higher proportion

belonged to the predictor class of the business attributes in shaping how much FBOs valued successor's gender (QMS14) (P = 0.002) and birth order (QMS15) (P = 0.001), and to that of the family employee's attributes in determining how much FBOs valued successor's share of ownership (QMS16) (P = 0.001).

3 Discussion

Single decision trees can also be established using various methods such as classification and regression tree (CART), conditional inference trees (CIT), and boosted regression tree (BRT) (Hothorn et al., 2006; Elith et al., 2008). However, RF consists of hundreds of decision trees using a bootstrapped randomization which renders it resistant to perturbations in the training dataset and able to perform better on the validation (unseen) data (Verikas et al., 2011). Understanding of family business-related insights to be derived from the application of RF is still in its infancy due to the very limited existence of practical and academic studies in related literature. For example, Peltonen (2018) found RF models to outperform BRT and artificial neural networks by being able to correctly classify family firms based on survey data from 7.153 European family businesses. Muller et al. (2016) successfully predicted the business volume of small-tomedium-sized enterprises in Switzerland as a function of characteristics of companies and cities in which businesses operated, and their interactions using RF for binary classification of small and large volume companies. They emphasized RF as the state-ofthe-art method in providing a unique combination of prediction accuracy and model interpretability which can serve as the basis for a decision support system.

At the forefront of the FBOs' attitudes in the process of succession were on-site training, supervision, sharing experiences, and actively working. A strong negative correlation of the FBOs' attitude of on-site training was found with the heir or successor qualities of commitment to a family business, entrepreneurship, and past performance (Figures A1 and A2) (Table 2). On-site training was positively associated with male heirs or successors (Figures A1 and A2). Overall, our correlation results in Table 2 and Figures A1 and A2 showed that the FBOs' attitudes of on-site training, supervision, sharing experiences, and actively working in succession lessened with the heir or successor attributes that they considered appropriate.

The permutation method, similar to the logic of the leave-one-out cross-validation, was shown to be a better measure of the relative variable importance than is the Gini method (Strobl et al., 2007). The explanatory variables found to contribute most to segmenting the binary classifications of the 17 response variables can also be considered to lead to the maximum information gain; in other words, the maximum difference in entropies. Strobl et al. (2007) found that the Gini method was biased towards the categorical variables with many distinct values, while the permutation method showed a bias towards correlated variables. In this context, the correlation matrices can also help to mitigate the multicollinearity issue by reducing the possibility of incorporating the highly correlated features in the RF models.

4 Limitations and future research directions

The present study has its limitations in the three main domains. First, the sample size was relatively small when compared to the target population size of 621 and 1562 family businesses officially registered to the Chambers of Commerce and Trade in Ardahan and Sivas, respectively. Therefore, more diverse and larger samples from different geographic regions, sectors, and religious orientations are recommended to obtain more generalizable and transferable results. Second, due to the very private nature of the subject matter, it was complicated to have participators in both cities show a willingness to openly respond to the questions posed in this study. Finally, the (semi-)structured interview and script in qualitative research that takes longer to complete and reveal confidential information generally suffer from validity and reliability. In future studies, other advanced machine-learning algorithms such as gradient boosting machines, and support vector machines remain to be explored in the computational social sciences.

Theoretical and practical conclusions

In practice, the domain of the FBOs' characteristics was found to have a more profound impact on both FBO's willingness to transfer to a successor and what successor's qualities were most valued than did the domains of the family business and employee characteristics. A total of the 17 RF classification models were constructed and validated for the 17 response variables of the FBOs' willingness to transfer to successors, and what successor's qualities FBOs valued most. The relative importance, sensitivity, and interaction effect of the explanatory variables were detected for each of the 17 response variables. What the present study and other similar studies have in common is the highdimensional data (49 variables in our case) of non-parametric and non-linear nature with small sample sizes, outliers, missing values, and noise. RF was shown to be robust to the complex and dynamic data structures (Bhattacharyya et al., 2011), and thus, how important to maximize the benefit from its use in a better understanding of causal relationships. The theoretical contribution made by this study is related to the data-driven (inductive) nature of the RF algorithm. This machine-learning and the data-mining algorithm used for the classification predictions has the potential to contribute to theory by discovering unknown patterns, drivers and interactions of relationships in the subject matter of the succession process of the family business. The machine-learning algorithms appear to be promising in terms of deriving theoretical and practical insights and strategies from computational social sciences in the era of big data.

References

- Allio, M. (2004). Family Businesses: Their Virtues, Vices and Strategic Path. Strategy and Leadership, 32(4), 24–33.
- ASSBA. (2016). "Key to Sustainable Success of Family Businesses." Akbank, Manager Development Unit of Sabanci University EDU, Deloitte and TAIDER Association of Family Businesses (ASSBA), Retrieved December 15, 2018, from https://www2.deloitte.com/content/dam/Deloitte/tr/Documents/risk/aile-sirketlerinde-surdurulebilir-basarinin-anahtarlari.pdf
- Bau, M., Hellerstedt, K., Nordqvist, M., & Wennberg, K. (2013). Succession in Family Firms. In The Landscape of Family Business, 167–197. Edward Elgar.
- Bhattacharyya, S., Jha, S., Tharakunnel, K.,& Westland, J. C.(2011). Data Mining for Credit Card Fraud: A Comparative Study. Decision Support Systems, 50(3), 602–613.
- Blodgett, M. S., Dumas, C., & Zanzi, A. (2011). Emerging Trends in Global Ethics: A Comparative Study of U.S. and International Family Values. Journal of Business Ethics, 99, 29–38.
- Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32.
- Cesaroni, F. M., & Sentuti, A. (2017). Family Business Succession and External Advisors. The Relevance of "Soft" Issues. Small Enterprise Research, 24(2),167–188.
- Chrisman, J. J., Chua, J. H., & Sharma, P. (1998). Important Attributes of Successors in Family Businesses: An Exploratory Study. Family Business Review,1(11), 19–34.
- Chua, J. H., Chrisman, J. J., & Sharma, P. (1999). Defining the Family Business by Behavior. Entrepreneurship Theory and Practice. 23(4), 19–39.
- Chua, J. H., Chrisman, J. J., & Sharma, P. (2003). Succession and Nonsuccession Concerns of Family Firms and Agency Relationship with Nonfamily Managers. Family Business Review, 16(2), 89–107.
- De Massis, A., Chua, J. H., & Chrisman, J. J. (2008). Factors Preventing Intra-Family Succession. Family Business Review, 2(21), 183–199.
- Devany, C. (2006). All in The Family: Succession Planning in A Family Business Is Important for Keeping Family and Business Intact. Journal of Property Management, 71(5), 14–14.
- Elith, J., Leathwick, J. R., & Hastie, T.(2008). A Working Guide to Boosted Regression Trees. The Journal of Animal Ecology, 77(4), 802–813.
- Grimmer, J. (2015). We Are All Social Scientists Now: How Big Data, Machine Learning, and Causal Inference Work Together. Political Science & Politics, 48(1), 80–83.
- Gomba, M., & Kele, T. (2016). Succession Planning in Black-Owned Family Businesses: A South African Perspective. International Journal of Business Administration, 7(5), 9–21.
- Güller, S. (2010). The Role of Turnover Planning in Institutionalization of Family Businesses and a Research Istanbul University Institute of Social Sciences. [Master thesis]. Department of Business Administration.
- Hacıbayramoğlu, M. G. (2014). The Impact of Succession on Family Business Innovation: A Case Study on Machinery Manufacturing Sector in Ankara, M.Sc., Department of Science and Technology Policy Studies, The Graduate School of Social Sciences of Middle East Technical University

- Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased Recursive Partitioning: A Conditional Inference Framework. Journal of Computational and Graphical Statistics, 15(3), 651–674.
- Jordan, M. I., & Mitchell, T. M. (2015). Machine Learning: Trends, Perspectives, and Prospects. Science, 349, 255–260.
- Laakkonen, A., & Kansikas, J. (2011). Evolutionary Selection and Variation In Family Businesses. Management Research Review, 34(9), 980–995.
- Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabási, A., Brewer, D., & Christakis, N., et al. (2009). Computational Social Science. Science, 323, 721–723.
- Le Breton-Miller, I., Miller, D., & Steier, L. (2004). Toward an Integrative Model of Effective FOB Succession. Entrepreneurship Theory and Practice, 28, 305–328.
- Luo, T., Kramer, K., Goldgof, D. B., Hall, L. O., Samson, S., Remsen, A., & Hopkins, T. (2004). Recognizing Plankton Images from the Shadow Image Particle Profiling Evaluation Recorder. IEEE Transactions on Systems Man and Cybernetics Part B—Cybernetics, 34(4), 1753–1762.
- Muller, D., Te, F., Meyer, F., & Cvijikj, I. P. (2016). Towards Data Driven Decision Support for Financial Institutions: Predicting Small Companies' Business Volume in Switzerland. Paper presented at the annual meeting for the 7th International Conference on Computer Science and Information Technology (CSIT), Amman, Jordan, pp. 1–6.
- Nordqvist, M., & Melin, L. (2010). Entrepreneurial families and family firms. Entrepreneurship & Regional Development, 22(3–4), 211–239.
- Peltonen, J. (2018). Can Supervised Machine Learning Be Used to Identify Family Firms Using A Sophisticated Definition? Academy of Management Proceedings, Advance online publication. https://doi.org/10.5465/AMBPP.2018.154.
- Sharma, P. (2004). An Overview of the Field of Family Business Studies: Current Status and Directions for the Future. Family Business Review,17(1), 1–36.
- Sharma, P., & Irving, P. G. (2005). Four Bases of Family Business Successor Commitment: Antecedents and Consequences. Entrepreneurship Theory and Practice, 29(1), 13–33.
- Sharma, P., & Rao, A. S. (2000). Successor Attributes in Indian and Canadian Family Firms: A Comparative Study. Family Business Review, 13(4), 313–330.
- Strobl, C., Boulesteix, A. L., Zeileis, A., & Hothorn, T. (2007). Bias in Random Forest Variable Importance Measures: Illustrations, Sources and A Solution. BMC Bioinformatics, 8, 25.
- Tucker, J. (2011). Keeping the Business in the Family and the Family in the Business: What is the Legacy? Journal of Family Business, 1(1), 65–73.
- Tuncel, H.T. (2011). (Not) Institutionalizing in Family Business. Konya Chamber of Commerce, Survey-Research Service. Retrieved December 15, 2018, from http://www.kto.org.tr/d/file/aile sirketi rapor.pdf
- Van Praag, C. M., & Versloot, P. H. (2007). What is the Value of Entrepreneurship? A Review of Recent Research. Small Business Economics, 29(4), 351–382.
- Venter, E., Boshoff, C., & Maas, G. (2005). The Influence of Successor-Related Factors on the Succession Process in Small and Medium-Sized Family Businesses. Family Business Review, 18(4), 283–303.

- Verikas, A., Gelzinis, A., & Bacauskiene, M. (2011). Mining Data with Random Forests: A Survey and Results of New Tests. Pattern Recognition, 44(2), 330–349.
- Yu, A., Lumpkin, G. T., Sorenson, R. L., & Brigham, K. H. (2012). The Landscape of Family Business Outcomes: A Summary and Numerical Taxonomy of Dependent Variables. Family Business Review, 25, 33–57.
- Zehe, A. K. (2016). Three Essay On Family Succession. [Dissertation thesis]. Department of Economics at the Technical University of Munich, 1-172.

The research paper passed the review process. | Received: November 27, 2019; Revised: January 24, 2020; Accepted: February 8, 2020; Published: July 10, 2020.

Appendices

Figure A1 | Spearman's rank-order correlation matrix (P< 0.05 when $r \ge 0.3$ and -0.3)

	CITY	GEN	AGE	EDU	GRA	BAC	BLS	BEY	PAV	FAS	BEC	NFM	NFMC	FME1	FME2	FME3	FME4	FME5	FME7	FME8	TFM	TIM	TAT1	TAT2	TAT3	TAT4	TAT5	TAT6	ATF2	ATF3
GEN	-0.19																													
AGE	-0.40																													
EDU		0.11																												
GRA			0.76		0.00																									
BAC			-0.38			0.44																								
BLS BEY					-0.30 -0.15		0.22																							
PAV			-0.05					0.10																						
FAS					-0.22		-0.11		0.60																					
BEC			0.38					-0.68	-0.60	-0.22																				
NFM			-0.05					0.19		-	-0.60																			
NFMC	0.50	0.38	-0.05	0.54	-0.05	0.50	0.39	-0.45	-0.79	-0.76	0.54	-0.79																		
FME1	-0.25		0.60		0.44		-0.37	-0.60	0.32			0.32																		
FME2	-0.19		-0.17						-0.48			-0.48		-0.66																
FME3			0.24						-0.95						0.34															
FME4		0.46							0.0_			-0.62		0.23		0.63	4.00													
FME5		0.46												0.23	0.06	0.63 0.57	1.00	0.60												
FME7 FME8		-0.06 -0.55		-0.55		0.40		-0.19 0.48				-0.55 0.91		-0.32 0.07	-0.06 -0.33	-0.89	0.62 -0.67	0.62 -0.67	-0.46											
TFM					0.03							0.63			-0.33		-0.07	-0.07		0.48										
TIM				0.60			0.33					-0.78			0.37		0.89	0.89		-0.71	-0.49									
TAT1												-0.48			0.36				0.48	-0.33	-0.19	0.37								
TAT2									0.32					-0.50	0.19		-0.86			0.43		-0.60	0.19							
TAT3	0.63	-0.48	-0.67	0.42	-0.51				-0.35					-0.40	0.06		0.43			-0.23		0.62	0.06	-0.16						
TAT4		0.06	0.10	0.14		0.32						-0.35		0.32			0.77	0.77		-0.41			0.06	-0.63	0.55					
TAT5			0.00						0.35			0.35		0.40		-0.19	-0.10			0.41	0.32			0.16	-0.10					
TAT6			0.76						-0.35			-0.35								-0.59			0.06	-0.63	-0.35		-0.55	0.05		
ATF2			-0.67			0.32		0.05			0.05			-0.40						-0.23			0.06	-0.16	1.00			-0.35	0.40	
ATF3					-0.18							-0.35					0.10		0.35	-0.41	-0.32			-0.16		0.10			0.10	0.40
ATF4	-0.25	0.19	0.60	-0.51	0.44	-0.13	-0.37	-0.60	0.32	0.19	0.51	0.32	-0.25	1.00	-0.66	-0.23	0.23	0.23	-0.32	0.07	0.50	-0.25	-0.66	-0.50	-0.40	0.32	0.40	0.32	-0.40	-0.40

Source: authors

CENTRAL EUROPEAN BUSINESS REVIEW

Figure A2 | Kendall Tau-b rank-order correlation matrix (P< 0.05 when r \geq 0.3 and -0.3)

	CITY	GEN	AGE	EDU	GRA	BAC	BLS	BEY	PAV	FAS	BEC	NFM	NFMC	FME1	FME2	FME3	FME4	FME5	FME7	FME8	TFM	TIM	TAT1	TAT2	TAT3	TAT4	TAT5	TAT6	ATF2	ATF3
GEN	-0.19																													
AGE	-0.38	0.69																												
EDU	0.18	0.10	-0.04																											
GRA			0.69																											
BAC			-0.35																											
BLS			0.04																											
BEY	-0.05		-0.53																											
PAV			-0.04					0.18																						
FAS			-0.21																											
BEC	0.18		0.35			0.49			-0.57																					
NFM			-0.04					0.18				0.70																		
NFMC			-0.05					-0.43					0.05																	
FME1			0.57							0.19			-0.25	0.00																
FME2													0.38	-0.66	0.00															
FME3			0.20							-0.55			0.72	-0.22	0.33	0.50														
FME4 FME5				0.32		0.22					0.56		0.82	0.22	0.05	0.58	1.00													
FME7			0.29			0.22		-0.63 -0.18			0.56 0.26		0.82 0.79	0.22 -0.32	0.05 -0.06	0.58 0.55	1.00 0.59	0.50												
FME8			-0.27											0.07	-0.30	-0.81	-0.62	0.59 -0.62	-0.42	1										
TFM	-0.22	0.31	0.13	-0.40	0.04	-0.33	-0.03	-0.39	0.63	0.31	-0.59	0.63	-0.50	0.50	-0.19	-0.43	-0.02	-0.02	-0.42	0.45										
TIM	0.42	0.36				0.32		-0.41					0.95	-0.24	0.13	0.68	0.87	0.24	0.75	-0.63	-0.47									
TAT1	0.38		0.00										0.38	-0.66	0.36	0.60	0.05	0.05	0.48	-0.30		0.36								
TAT2	0.00	-0.38											-0.50	-0.50	0.19	-0.34	-0.82	-0.82	-0.32	0.40			0.19							
TAT3	0.63		-0.63	0.39	-0.47	0.32	-0.09	0.05	-0.35	-0.48	0.04	-0.35	0.63	-0.40	0.06	0.18	0.41	0.41	0.80	-0.21		0.60		-0.16						
TAT4			0.09										0.63	0.32	-0.48	0.41	0.73	0.73	0.80	-0.38		0.60			0.55					
TAT5	0.32		0.00									0.35	-0.16	0.40	-0.60	-0.18	-0.09	-0.09	0.10	0.38		-0.25		0.16	-0.10	0.35				
TAT6			0.72										0.16	0.32	0.06	0.41	0.41	0.41	-0.10	-0.55		0.25		-0.63	-0.35	0.10	-0.55			
ATF2			-0.63									-0.35	0.63	-0.40	0.06	0.18	0.41	0.41	0.80	-0.21			0.06			0.55	-0.10	-0.35		
ATF3	0.16		0.13										0.16	-0.40	0.06	0.41	0.09	0.09	0.35	-0.38		0.25	0.60	-0.16		0.10	-0.55	0.55	0.10	
ATF4	-0.25	0.19	0.57	-0.49	0.41	-0.13	-0.35	-0.58	0.32	0.19	0.49	0.32	-0.25	1.00	-0.66	-0.22	0.22	0.22	-0.32	0.07	0.50	-0.24	-0.66	-0.50	-0.40	0.32	0.40	0.32	-0.40	-0.40

Table A1| Description of response and explanatory variables used in this study (N = 53)

No	Symbol	Description	N	Observed level	Level frequency (%)	Variable type	Information classification	Max entropy
1	GEN	Gender	53	1 Female	5.7	Predictor	FBO attribute	0.31
!	AGE	Age	53	2 Male 1 18-30 2 31-40 3 41-50	94.3 7.6 11.3 35.9	Predictor	FBO attribute	0.84
i	EDU	Education level	53	4 > 50 1 Primary 2 Secondary	45.2 15.1 17.0	Predictor	FBO attribute	0.94
4	GRA	Graduation	16	 3 High 4 University 5 Masters 1 Business/Economics 2 Engineering 3 Education 4 Veterinary 	37.7 18.9 11.3 43.8 37.5 6.3 6.3	Predictor	FBO attribute	0.77
i	BAC	Activity field	51	5 Others 1 Commerce 2 Service	6.1 33.3 33.3	Predictor	Business attribute	1.0
i	CITY	City	53	3 Manufacturing1 Ardahan	33.4 52.8	Predictor	Business attribute	0.99
•	BLS	Legal status	45	2 Sivas1 Private Co.2 Incorporated Co.	47.2 73.3 4.4	Predictor	Business attribute	0.63
;	BEY	Establishment year	51	3 Limited Co. 1 1920-1950 2 1951-1980 3 1981-2000	22.3 2.0 27.5 39.2	Predictor	Business attribute	0.83
	PAV	Partner availability	53	4 2001-2018 1 Yes 2 No	31.3 20.8 79.2	Predictor	Business attribute	0.73
0	FAS	Family ownership share	51	2 NO 1 ≤ 50% 2 > 50% ≤ 99% 3 100%	2.0 9.8 88.2	Predictor	Business attribute	0.37
1	BEC	Employee count	47	1 Non 2 1-5 3 6-10 4 > 10	4.3 53.2 14.9 27.6	Predictor	Business attribute	0.80
2	NFM	Non-family manager availability	53	1 Yes 2 No	26.4 73.6	Predictor	Business attribute	0.83
3	NFMC	Non-family manager count	52	1 1 2 > 1	73.6 84.6 15.4	Predictor	Business attribute	0.61
14	FME1	Employee count	43	1 Non 2 1-5 3 6-10 4 > 10	73.4 70 86.1 4.7 2.2	Predictor	Family employee attribute	0.39
5	FME2	Gender	45	1 Female 2 Male	15.6 84.6	Predictor	Family employee attribute	0.62
6	FME3	Education	45	1 Primary 2 Secondary 3 High	2.2 13.3 40.0	Predictor	Family employee attribute	0.77
7	FME4	Work period in the place	45	4 University 1 < 1 year 2 1-5 years 3 6-10 years 4 11-20 years 5 > 20 years	44.5 4.4 22.2 20.0 42.2 11.2	Predictor	Family employee attribute	0.87
18	FME5	Work period outside	43	1 < 1 year 2 1-5 years	25.6 16.3	Predictor	Family employee attribute	0.94

				3	6-10 years	41.9			
40	EMEO	Full control Control to	45	4	11-20 years	16.2	Dunglinton	Face the assertance of tellers	0.00
19	FME6	Full vs part time status	45	1 2	Full time Part time	73.3 26.7	Predictor	Family employee attribute	0.83
20	FME7	(out-of-)job experience	45	1	Yes	46.7	Predictor	Family employee attribute	0.99
		(cut of you expenses		2 1	No	53.3		r anny employee annuale	
21	FME8	Job task definition	45	1	Manager	48.9	Predictor	Family employee attribute	0.83
				2 3	Vice manager Technical staff	13.3 22.2			
				4	Office staff	22.2 8 0			
					Others	8.9 6.7			
22	TIM	Time to leave to	49	5 1	No decision	55.1	Predictor	FBO attitude	0.75
		heir/successor		2	In 1-10 years	40.8			
23	TAT1	On-site training in	53	3 1	In > 10 years Least preferred	4.1 43.4	Predictor	FBO attitude	0.98
23	IAII	succession	33		Most preferred	56.6	i redictor	1 DO attitude	0.30
24	TAT2	Monitoring in succession	53	2 1	Least preferred	52.8	Predictor	FBO attitude	0.99
				2	Most preferred	47.2			
25	TAT3	Supervision in succession	53	1	Least preferred Most preferred	56.6 43.4	Predictor	FBO attitude	0.98
26	TAT4	Actively working in	53	2 1	Least preferred	43.4 66.0	Predictor	FBO attitude	0.92
	17111	succession	00	2 1	Most preferred	34.0	1 Todiotoi	1 DO attitudo	0.02
27	TAT5	Transfer of rights before	53	1	Least preferred	56.6	Predictor	FBO attitude	0.98
00	TATO	death	50	2	Most preferred	43.4	Dan d'atan	EDO - Who de	0.00
28	TAT6	Transfer of rights after death	53	1	Least preferred Most preferred	66.0 34.0	Predictor	FBO attitude	0.92
29	ATF1	Encouraging heir to take	53	2 1	Least preferred	20.8	Predictor	FBO attitude	0.73
		initiatives		2	Most preferred	79.2			
30	ATF2	Sharing experiences with	53	1	Least preferred	26.4	Predictor	FBO attitude	0.83
31	ATF3	heir Criticizing heir	53	2 1	Most preferred Least preferred	73.6 58.5	Predictor	FBO attitude	0.97
31	AII 5	Onticizing fich	55	2 1	Most preferred	41.5	Trouidioi	1 DO attitude	0.57
32	ATF4	Remaining neutral	53	1	Least preferred	84.9	Predictor	FBO attitude	0.61
22	TCN4	\A/:II:a ava a a a ta tuan afau ta	50	2	Most preferred	15.1	D	FDO attituda	0.70
33	TFM	Willingness to transfer to successor	50	1 2	Yes No	76.0 24.0	Response	FBO attitude	0.79
34	QMS1	Honesty	53	1	Least preferred	3.8	Response	Successor quality FBO seeks	0.23
	01100			2 1	Most preferred	96.2			
35	QMS2	Commitment to family business	53	1	Least preferred Most preferred	54.7 45.3	Response	Successor quality FBO seeks	0.99
36	QMS3	Entrepreneurship	53	2 1	Least preferred	30.2	Response	Successor quality FBO seeks	0.88
•		Zimopronogramp		2	Most preferred	69.8	тооролоо	Cuccocco quanty i De coche	
37	QMS4	Education level	53	1	Least preferred	37.7	Response	Successor quality FBO seeks	0.95
38	QMS5	Ability to socialize	53	2 1	Most preferred Least preferred	62.3 43.4	Response	Successor quality FBO seeks	0.98
30	QIVIOS	Ability to socialize	55	2	Most preferred	56.6	Response	Successor quality I BO seeks	0.90
39	QMS6	Ability to solve problems	53	2	Least preferred	17.0	Response	Successor quality FBO seeks	0.65
	0110-			2	Most preferred	83.0			
40	QMS7	Trustworthiness	53	1 2	Least preferred Most preferred	22.6 79.4	Response	Successor quality FBO seeks	0.77
41	QMS8	Creativity	53	1	Least preferred	13.2	Response	Successor quality FBO seeks	0.56
		ŕ		2	Most preferred	86.8	•	• •	
42	QMS9	Ability to strategically plan	53	1	Least preferred	22.6	Response	Successor quality FBO seeks	0.77
43	QMS10	Respectability	53	2 1	Most preferred Least preferred	77.4 52.8	Response	Successor quality FBO seeks	0.99
70	SIVIO 10	Respectability	55	2	Most preferred	47.2	response	Successor quality I DO SEEKS	0.33
44	QMS11	Past performance	53	2	Least preferred	34.0	Response	Successor quality FBO seeks	0.92
45	OMC40	Kaani kani	50	2 1	Most preferred	66.0	D	Consessed available EDO and a	0.00
45	QMS12	Know-how	53	1 2	Least preferred Most preferred	45.3 54.7	Response	Successor quality FBO seeks	0.99
46	QMS13	Seniority	53	1	Least preferred	71.7	Response	Successor quality FBO seeks	0.85
		•			•			, ,	

				2	Most preferred	28.3			
47	QMS14	Gender	53	1	Least preferred	67.9	Response	Successor quality FBO seeks	0.90
				2	Most preferred	32.1	·	, ,	
48	QMS15	Birth order	53	1	Least preferred	88.7	Response	Successor quality FBO seeks	0.50
				2	Most preferred	11.3	'	' '	
49	QMS16	Subshare size	53	1	Least preferred	75.5	Response	Successor quality FBO seeks	0.80
				2	Most preferred	24.5	'	. ,	

Table A3 | Error measures of 17 RF classification models

Name	TFM	QMS1	QMS2	QMS3	QMS4	QMS5	QMS6	QMS7	QMS8	QMS9	QMS10	QMS11	QMS12	QMS13	QMS14	QMS15	QMS16
ROC-AUC	0.60	0.76	0.69	0.61	0.66	0.66	0.78	0.47	0.66	0.64	0.74	0.59	0.59	0.74	0.66	0.47	0.80
Lower confidence limit	0.42	0.53	0.55	0.45	0.52	0.51	0.62	0.29	0.47	0.43	0.60	0.44	0.44	0.59	0.50	0.13	0.68
Upper confidence limit	0.77	0.98	0.84	0.78	0.81	0.81	0.94	0.65	0.84	0.86	0.88	0.75	0.74	0.89	0.81	0.82	0.92
Líft	1.32	0.00	1.14	1.88	1.00	1.87	4.44	1.67	1.43	3.33	1.43	1.11	1.38	1.13	1.47	0.85	1.33
Overall misclassification rate	0.26	0.38	0.36	0.49	0.40	0.40	0.30	0.57	0.47	0.40	0.28	0.45	0.42	0.26	0.38	0.34	0.28

Source: authors

Table A4 | Confusion matrices of 17 RF classification models

Table A4 Collic										OMCO			OMCA			OMCE			OMCC			OMCZ			OMCO		
	TFM			QMS1			QMS2			QMS3			QMS4			QMS5			QMS6			QMS7			QMS8		
Observed	Percer	nt Pre	dicte	d Percei	nt Pre	dicted	d Perce	nt Pre	dicte	d Percer	nt Pre	dicte	d Perce	าt Pre	dicted	d Percer	nt Pred	dicted	d Percer	nt Pre	dicte	d Percer	nt Pre	dicted	d Percer	nt Pre	dicted
classes	N correc	ct clas	sses	N correc	ct clas	sses	N corre	ct clas	sses	N correc	ct clas	ses	N corre	ct clas	sses	N correc	t clas	ses	N correc	t clas	sses	N correc	t clas	sses	N correc	t clas	ses
		1	2		1	2		1	2		1	2		1	2		1	2		1	2		1	2		1	2
1	38 65.8	25	13	2 100.0	2	0	29 48.3	14	15	16 93.8	15	1	20 90.0	18	2	23 87.0	20	3	9 100.0	9	0	12 100.0	12	0	7 100.0	7	0
2	12 50.0	6	6	51 25.5	38	13	24 70.8	7	17	37 18.9	30	7	33 36.4	21	12	30 36.7	19	11	44 9.1	40	4	41 14.6	35	6	46 2.2	45	1
Total	50	31	19	53	40	13	53	21	32	53	45	8	53	39	14	53	39	14	53	49	4	53	47	6	53	52	1
Average	57.9			62.8			59.6			56.3			63.2			61.8			54.6			57.3			51.1		
Overall accuracy	y 62.0			28.3			58.5			41.5			56.6			58.5			24.5			34.0			15.1		
•	QMS9			QMS10			QMS11			QMS12			QMS13			QMS14			QMS15			QMS16					
1	12 100.0	12	0	28 57.1	16	12	18 88.9	16	2	24 79.2	19	5	38 15.8	6	32	36 33.3	12	24	47 0.0	0	47	40 22.5	9	31			
2	41 7.3	38	3	25 72.0	7	18	35 28.6	25	10	29 41.4	17	12	15 93.3	1	14	17 88.2	2	15	6 100.0	0	6	13 100.0	0	13			
Total	53	50	3	53	23	30	53	41	12	53	36	17	53	7	46	53	14	39	53	0	53	53	9	44			
Average	53.7			64.6			58.7			60.3			54.6			60.8			50.0			61.3					
Overall accuracy	28.3			64.2			49.1			58.5			37.7			50.9			11.3			41.5					

Source: authors

CENTRAL EUROPEAN BUSINESS REVIEW

Table A5 | Normalized scores (%) of relative predictor importance based on (a) permutation and (b) Gini methods of 17 RF classification models

(a) TFM	(,,,	(b) TFM		(a) QMS1	(b) QMS1		(a) QMS	2	(b) QMS2		
GR A 100.0		FME 100.0 8		TAT 100.	FME6 100.0		TAT2	100.	BEC	100.0	
FME 72.2 8		GRA 98.9		FME 72.1	TAT1 66.5		FME4	29.1	TAT2	92.0	
CIT 58.4 Y		EDU 80.0		FME 64.2	FME4 60.6		GRA	27.9	GRA	82.7	
BAC 52.5 ATF 51.2		BAC 56.5 BEY 50.4		AGE 57.6	FME5 49.8 AGE 34.3		BEC ATF3	26.7 26.3	FME4 TIM	71.9 61.8	
2 EDU 38.3		AGE 48.7		FME 39.4	FME3 31.9		TAT3	24.3	FME8		
		AGL 40.7		1 NIL 39.4	FIVILO 31.9			24.3	TIVILO	31.0	
TIM 30.9 FME 30.4 1		CITY 48.0 FME 45.7		PAV 23.3	TIM 30.4 ATF3 20.5		BAC FME5	22.1 17.5	ATF3 FME5	51.0 49.8	
TAT 23.1		ATF 39.2 2		BAC 13.5	FME1 20.0		TIM	16.1	EDU	49.2	
NFM 19.8		FME 37.7		BEC 13.1	EDU 20.0		FME3	14.0	AGE	47.4	
BEY 19.5		FME 36.7		FME 7.4 8	BEC 18.1		ATF2	13.2	BEY	38.1	
FME 19.3		5 FME 36.1		TAT 2.8	TAT2 15.8		TAT6	13.1	FME3	35.9	
NFM 18.4 C		TAT 23.6		6 TAT 2.3 5	CITY 14.8		TAT1	9.3	TAT3	35.7	
BLS 11.6		ATF 17.7		3	BAC 12.3	IIII	FME1	8.6	BAC	32.6	
AGE 11.5 TAT 11.0		TIM 16.9 BEC 16.9			ATF1 10.7 BLS 10.1		PAV TAT4	8.2 7.4	TAT1 ATF1	30.1	
5											
FME 10.8 5		ATF 12.9 4	IIIII		TAT3 9.0	III	FME7	5.9	FME1	23.6	
BEC 9.6		TAT 12.3			FME7 8.9	IIII	FME2	3.4	TAT5	21.7	
ATF 9.5	III	NFM 11.9	IIII		FME8 8.0	III	ATF1	3.4	ATF2	19.8	
FME 9.3 4	III	NFM 10.9	IIII		BEY 7.2	III	TAT5	3.1	NFM	19.5	
TAT 8.8	III	TAT 10.5	IIII		TAT4 6.2	I	NFMC	2.3	TAT6	18.6	
FAS 7.2	III	TAT 10.2 2	III		ATF2 6.1	I	FAS	1.8	NFMC	16.0	
PAV 6.4 GEN 5.0		PAV 10.2 BLS 10.0	 		TAT6 3.3 NFM 2.9		NFM	0.4	FME6	13.9	
TAT 3.3		FAS 9.7			TAT5 2.8				CITY PAV	13.6 13.2	
1 FME 3.2 7	I	TAT 9.5	III		FME2 2.5				TAT4	12.0	
TAT 2.5	I	ATF 9.0	III		FAS 1.4				BLS	11.5	
6 FME 2.3 6	1	TAT 8.8 1	IIII		PAV 0.7				FAS	11.1	IIII

4		7	0			0.00			7111 -	0.2
7		FME 8.	1			ATF4 0.1			FME2	6.0
		FME 6.0	0						FME7	5.8
() 01100		GEN 2.	4	() 01104		#\\ 0110 1		() 01105	GEN	4.7
(a) QMS3 TIM 100.	(b) QMS3 EDU	100.0		(a) QMS4 TAT5	100.	(b) QMS4 EDU	100.0	(a) QMS5 AGE 100.0		(b) QMS5 BAC 100.
0 TAT 78.9	BEC				0 71.2	FME8	82.6			0 AGE 85.3
1 FME 77.1	TIM	69.5		NFMC	59.3	BEY	72.8			FME 84.8
4 TAT 69.3	TAT1	65.4		BEY	56.8	AGE	67.0	5 EDU 81.6		8 EDU 84.3
BEC 60.0	FME5	64.1		BAC	56.6	BEC	64.7	TAT 70.0		FME 81.5
AGE 48.2	FME8	63.1		PAV	51.9	FME4	62.3	BAC 58.9		BEC 78.8
FME 45.3	FME4	58.7		ATF3	51.6	NFMC	54.7	BEY 46.0		TAT2 69.4
TAT 40.7	FME1	50.0		FME6	50.7	FME5	53.9	FME 34.0 8		BEY 62.6
FME 37.6	AGE	48.8		EDU	43.8	TAT5	52.6	FME 32.2		FME 56.1
FME 35.5	BEY	43.9		FME5	37.9	PAV	49.4	TAT 30.3		GRA 46.8
BAC 33.7	FME3	35.4		FME8	34.8	GRA	46.6	ATF 25.4		FME 40.7
EDU 32.9	ATF3	33.5		BEC	34.6	ATF3	39.3	TAT 23.5		ATF3 37.5
TAT 27.6	BAC	33.1		FME4	30.0	FME6	35.4	NFM 21.0		FME 37.4
BLS 27.0	GRA	31.0		GRA	25.7	BAC	35.1	FME 17.7		TAT1 35.9
TAT 21.8 3	BLS	28.9		TAT6	25.3	FME3	32.9	TIM 17.3		NFM 31.6
ATF 21.4	ATF2	24.5		TAT4	24.1	TAT4	27.7	TAT 14.3		FME 28.3
GRA 14.5	GEN	20.3		FME1	15.2	TAT1	25.7	TAT 14.2		BLS 27.4
TAT 13.4 6	TAT5	17.3		FME3	12.8	TAT6	22.1	GRA 13.5		TIM 25.2
ATF 11.5	CITY	15.5		TAT3	12.4	FME7	22.1	PAV 11.8		TAT6 22.9
FME 7.8	TAT3	15.3	IIIIII	TAT1	12.0	TIM	21.1	FME 10.4		CITY 19.7
PAV 7.0 FME 3.6	ATF1 NFMC	14.3 14.2		FME7 FAS	11.9 6.9	CITY FME1	20.4 19.7	BLS 9.2 NFM 8.8 C		FAS 19.2 TAT5 17.7
8 FME 2.0 2	FME6	14.0	IIIII	GEN	6.3	ATF2	19.3	FAS 7.5	III	PAV 16.9

GRA 0.2

ATF4

6.2 ||

ATF 0.9

FME 8.3

GEN 1.8	TAT4	13.5	NFM	4.9	NFM	18.7		FME 4.2		TAT4 16.8
NFM 1.1	TAT2	13.4	ATF2	4.4	TAT2	18.3		4 TAT 2.6 3	1	TAT3 16.8
NFM 1.0 C	FME7	12.0	TAT2	2.4	TAT3	16.7		ATF 0.9 2		ATF1 16.4
ATF 0.8	TAT6	11.2			BLS	13.0	IIIII	2		NFM 13.3 C
FAS 0.6	NFM	10.2			GEN	12.3	IIII			FME 12.6
	FME2 ATF4	9.0 8.5			ATF1 FAS	11.2 10.4	 			ATF2 12.6 ATF4 10.6
	PAV	8.4			FME2	10.1	IIII			FME 7.7 2
(a) QMS6	FAS (b) QMS6	7.6	(a) QMS7		ATF4 (b) QMS7	5.3		(a) QMS8		GEN 3.5 (b) QMS8
TAT 100.		100.0		100.		100.0				EDU 100.
6 0 BAC 98.9		 87.5		0 82.2		72.0		TAT 98.7		0 FME 63.2
 BLS 94.6	BLS	 82.7	TAT1	 38.7	FME8	70.6		3 BEC 82.6		8 BEY 53.2
TAT 92.3	ATF1	 76.7	FME8	33.0	AGE	59.1		FME 77.6		ATF2 42.0
4 ATF 66.1	TAT6	76.6	AGE	30.9	BAC	42.8		8 ATF 61.5		TAT5 40.8
1 FME 61.7	TAT3	65.7	FME6	28.3	TAT1	40.7		2 ATF 58.5		TIM 40.6
8 TAT 60.4	FME5	60.0	ATF2	26.2	BEY	40.0		4 NFM 56.5		BEC 38.1
3 FME 59.8	EDU	54.0	TAT5	18.0	BEC	29.9		TIM 53.9		NFM 37.4
5 FME 57.1	TAT2	49.7	NFMC	14.7	FME5	28.4		BEY 51.9		TAT3 33.2
FAS 35.6	FME4	47.8	BEY	13.2	FME4	27.5		TAT 46.6		FME 32.1
FME 27.8	BAC	46.9	ATF4	12.8	FME6	26.2		BLS 39.4		TAT1 31.5
PAV 27.4	FAS	43.4	BEC	6.0	GRA	25.2		ATF 38.5		AGE 28.3
TAT 23.8	FME3	33.3	BAC	3.6	TAT5	25.1		PAV 38.1		ATF4 28.1
FME 23.4	AGE	30.7	FME2	3.6	ATF3	23.4		FME 31.3		FME 26.2
ATF 22.6	FME1	26.7	TAT4	2.8	FME3	22.5		TAT 30.6		TAT6 21.8
FME 16.5	BEC	24.4	GEN	2.7	FME7	19.9		FME 30.2		ATF1 21.4
NFM 15.1	ATF2	22.3			NFMC	19.0		TAT 26.6		BAC 20.8
GRA 14.9	GRA	21.9			TAT2	16.7		6 FME 15.5 1		ATF3 19.6
EDU 14.5	PAV	20.8			TIM	15.8		ATF 10.5		FME 19.6

								1			5
BEC 14.3 FME 14.1	BEY TAT5	20.6 17.3			TAT4 TAT6	15.4 14.6			§ 10.3 ≣ 7.3	IIII III	PAV 14.7 BLS 12.8
BEY 8.7	NFM	16.5			ATF2	14.4		ТАТ 4	6.5		FME 11.4 6
TIM 7.5	NFMC	16.4			ATF4	11.6		•	≣ 5.0		GRA 11.2
TAT 6.0	TAT1	14.3			PAV	11.5		-	N 4.8		CITY 10.5
5 NFM 5.5	ATF3	12.2			TAT3	11.0			≣ 4.0	I	FME 10.1
C FME 4.7	CITY	11.8			BLS	10.3		_	≣ 2.6	I	2 TAT2 8.2
2 ATF 4.2	TIM	10.1			CITY	10.3		6 GR	A 2.5	I	TAT4 8.1
3 ATF 4.2 ∥	FME7	8.6			FME2	10.2			<i>M</i> 0.1		FME 7.4
4 GEN 2.3	FME2	7.9			FME1	10.0		С			1 NFM 7.1
	ATF4	6.9			ATF1	9.2					C FME 6.1
	GEN FME6	6.6 5.3			GEN FAS	5.4 5.3					7 FAS 5.6
a) QMS9	FIVIEO	 (b) QMS9	(a) QMS	\$10		ე.ა (MS10		(a) QMS	S11		GEN 1.8 (b) QMS11
TAT2 100.0		FME5 100.0	∥ TÁT1	100.					100.0		TAT 100.0
			(0							1
FME5 89.7		FME8 88.2	ATF3	65.1	ATF	68.5		TAT3	74.9		FME 82.5
FME5 89.7 FME7 70.9	11111111111111111111111111111111111111			65.1	ATF 3 TAT			TAT3	74.9 51.0		
			BEY (3 TAT 1 FME	67.8					FME 82.5
FME7 70.9	 	TAT2 80.7	BEY (FME8 :	63.0	3 TAT 1	67.8 61.1 46.3		TAT2	51.0		FME 82.5
FME7 70.9 FME4 43.9 FAS 41.7		TAT2 80.7	BEY (FME8 : TAT4 :	63.0	3 TAT 1 FME 8 EDU	67.8 61.1 46.3 43.0		TAT2 GRA NFM	51.0 26.2 25.7		FME 82.5 8 EDU 71.6
FME7 70.9 FME4 43.9 FAS 41.7 TAT5 38.9		TAT2 80.7 EDU 74.1 AGE 66.8 FAS 66.4 BEY 61.3	BEY GRA TAT4 S	63.0	3 TAT 1 FME 8 EDU FME 5 TAT 4	67.8 61.1 46.3 43.0 41.8		TAT2 GRA NFM ATF2	51.0 26.2 25.7 25.0		FME 82.5
FME7 70.9 FME4 43.9 FAS 41.7 TAT5 38.9 TIM 35.4		TAT2 80.7 EDU 74.1 AGE 66.8 FAS 66.4 BEY 61.3 FME4 53.7	BEY (FME8 : GRA : TAT4 : NFMC : ATF2 : A	63.0	3 TAT 1 FME 8 EDU FME 5	67.8 61.1 46.3 43.0 41.8 41.5		TAT2 GRA NFM ATF2 CITY	51.0 26.2 25.7 25.0 24.9		FME 82.5
FME7 70.9 FME4 43.9 FAS 41.7 TAT5 38.9 TIM 35.4 ATF4 33.3		TAT2 80.7	BEY FME8 GRA TAT4 NFMC ATF2 TAT2	63.0	3 TAT 1 FME 8 EDU FME 5 TAT 4 GRA	67.8 61.1 46.3 43.0 41.8 41.5 34.0		TAT2 GRA NFM ATF2 CITY BAC	51.0 26.2 25.7 25.0 24.9 22.2		FME 82.5
FME7 70.9 FME4 43.9 FAS 41.7 TAT5 38.9 TIM 35.4 ATF4 33.3 AGE 29.6 EDU 26.1		TAT2 80.7	BEY FME8 GRA TAT4 NFMC ATF2 TAT2 TAT3	63.0	3 TAT 1 FME 8 EDU FME 5 TAT 4 GRA FME 4 NFM C	67.8 61.1 46.3 43.0 41.8 41.5 34.0 30.4		TAT2 GRA NFM ATF2 CITY BAC TIM BEC	51.0 26.2 25.7 25.0 24.9 22.2 21.8 18.5		FME 82.5 8 EDU 71.6
FME7 70.9 FME4 43.9 FAS 41.7 TAT5 38.9 TIM 35.4 ATF4 33.3 AGE 29.6 EDU 26.1 FME3 23.8		TAT2 80.7 EDU 74.1 AGE FAS 66.8 BEY 61.3 FME4 53.7 FME3 36.9 TAT6 36.6 BEC 36.4	BEY FME8 GRA TAT4 NFMC ATF2 TAT2 TAT3 FME3	63.0	3 TAT 1 FME 8 EDUU FME 5 TAT 4 GRA FME 4 NFM C ATF 2	67.8 61.1 46.3 43.0 41.8 41.5 34.0 30.4 26.3		TAT2 GRA NFM ATF2 CITY BAC TIM BEC FME4	51.0 26.2 25.7 25.0 24.9 22.2 21.8 18.5		FME 82.5
FME7 70.9 FME4 43.9 FAS 41.7 TAT5 38.9 TIM 35.4 ATF4 33.3 AGE 29.6 EDU 26.1 FME3 23.8 TAT4 20.9		TAT2 80.7 EDU 74.1 AGE FAS 66.8 BEY 61.3 FME4 53.7 FME3 36.9 TAT6 36.6 BEC 36.4 TIM 36.1	BEY FME8 GRA TAT4 NFMC ATF2 TAT2 TAT3 FME3 BEC	63.0	3 TAT 1 FME 8 EDUU FME 5 TAT 4 GRA FME 4 NFM C ATF 2 TAT 2	67.8 61.1 46.3 43.0 41.8 41.5 34.0 30.4 26.3 24.6		TAT2 GRA NFM ATF2 CITY BAC TIM BEC FME4 FME6	51.0 26.2 25.7 25.0 24.9 22.2 21.8 18.5 17.1 15.5		FME 82.5
FME7 70.9 FME4 43.9 FAS 41.7 TAT5 38.9 TIM 35.4 ATF4 33.3 AGE 29.6 EDU 26.1 FME3 23.8		TAT2 80.7 EDU 74.1 AGE FAS 66.8 BEY 61.3 FME4 53.7 FME3 36.9 TAT6 36.6 BEC 36.4	BEY FME8 GRA TAT4 NFMC ATF2 TAT2 TAT3 FME3 BEC TAT6	63.0	3 TAT 1 FME 8 EDUU FME 5 TAT 4 GRA FME 4 NFM C ATF 2	67.8 61.1 46.3 43.0 41.8 41.5 34.0 30.4 26.3 24.6		TAT2 GRA NFM ATF2 CITY BAC TIM BEC FME4 FME6	51.0 26.2 25.7 25.0 24.9 22.2 21.8 18.5		FME 82.5

BEY 17.6		TAT5	29.5		PAV	2.8	TAT 20.5		FME2	8.1	Ш	ATF 36.8	
NFM 17.4		BLS	28.8		NFM	2.6	3 FME 19.7		FME3	6.9		CITY 34.6	
TAT3 13.6		ATF4	24.4		TAT5	2.2	FME 18.1	IIIIIIII	FME8	5.6		ATF 25.7	
BEC 12.5		GRA	24.1		FME7	2.0	TIM 13.8	IIIIII	FME7	4.9		FME 20.1	
TAT1 12.3		ATF2	23.2		FME2	1.6	TAT 11.6 5	IIIII	TAT5	4.0	1	FME 18.7	
BLS 12.0		ATF1	21.8		FME5	0.1	TAT 11.2	IIIII	ATF4	1.1		TAT 18.4 6	
FME6 10.3	III	FME6	21.7				ATF 10.3	IIII	FME1	0.6		TAT 17.0	
FME2 10.2	III	FME2	19.4				FME 9.5	IIII				TAT 14.7	IIIIII
FME8 9.4	III	FME1	17.9				6 FME 8.7	IIII				BLS 13.2	IIIIII
BAC 4.7		NFM	15.7				CITY 8.6	IIII				ATF 12.8	IIIIII
GRA 0.8		TAT4	15.6				BLS 7.6	III				5 FME 12.5 2	IIIIII
		TAT3	13.3				NFM 7.4	III				ATF 11.3	
		ATF3	12.8				PAV 7.0	Ш				FME 11.2 7	IIIII
		TAT1	11.9				FME 6.6	Ш				NFM 9.3 C	
		CITY PAV					FAS 6.5 ATF 5.1	 				FAS 9.3 PAV 9.0	
		GEN					4 GEN 2.7	II				GEN 5.5	
(a) QMS12	(b	O QMS12		I	(a) QMS13	3	(b) QMS13		(a) QMS	14		(b) QMS14	
FME8 100.	•	ME8	100.		AGE	100.	•		ATF3 1				
0 TAT1 91.6) 78.3			0 83.2	AGE 81.8		BEC 6		 	BEY 97.6	
ATF3 52.6		AT1 6	67.5 III		FME8 BEC ATF3	51.7	FME8 70.6 CITY 58.4 FME5 48.1		BEY 6 FME5 5 BAC 5	1.0			

NFMC 0.2	BLS 17.5 FME1 17.1 TAT4 15.8 FME6 15.3 ATF1 14.0 PAV 13.4 TAT2 11.9 TAT6 11.8 FME7 11.6 NFMC 11.4 ATF4 8.9 FME2 8.4 FAS 7.0	BEY 9.4 ATF1 7.7 TAT3 7.2 NFMC 6.2 TAT1 6.1 ATF4 4.9 FME3 3.8 PAV 1.6 FAS 1.5 FME7 0.5	TAT3 13.0 NFM 12.7 FME2 12.6 TAT6 11.1 ATF1 10.7 FME7 10.3 TAT2 10.2 ATF4 9.1 NFMC 8.9 TAT4 8.9 PAV 7.6 TAT1 7.5 FAS 7.5	EDU 4.1 TIM 3.1 TAT5 2.3 FME7 0.5	BLS 19.7
(a) OBAS4E	GEN 5.1		GEN 3.5	(h) ONICAC	GEN 4.1
(a) QMS15 BEY 100.0	(b) QMS15	CITY 100.0	(a) QMS16	(b) QMS16	
	FAS 6.4 GEN 3.7		FME2 4.7 GEN 4.6		

CENTRAL EUROPEAN BUSINESS REVIEW